2011年1月25日星期二

Need large-capacity data storage? Try your intestine

This is absolutely cool although I have read about it on a hong kong newspaper. Now the West is also reporting this. Congrats to the CUHK students! You guys did a great job!

Looks like they have really got a plan to take 'biostorage' to kthe next step...

Need large-capacity data storage? Try your intestine
by Sarah Jacobsson Purewal, PC World  
Jan 22, 2011 10:00 pm


If you needed to score 900,000GB of data, how much do you think your storage system would weigh?

Let's see: 900,000GB is about 880TB. LaCie's 2TB Quadra weighs about 6 pounds. Four hundred and forty 2TB Quadras would weigh about 2,640 pounds—so 900,000GB of data storage would weigh about one and a quarter tons.

That's a bit heavy. But what if you could have it for one gram? A group of 11 students at Hong Kong's Chinese University are making progress in the science (or perhaps I should say art) of "biostorage," i.e. storing data in bacteria cells. For the project, the group is using the bacterium Escherichia coli, a.k.a. E. coli—that bacterium that causes you to have fun experiences like food poisoning and UTIs.

Apparently, storing data in bacterial cells is pretty simple (if you're skilled in the art of manipulation at the cellular level). The group of students has developed a method of compressing data, splitting it up, and distributing it between bacterial cells, AFP reports. The students remove DNA from bacterial cells, manipulate the DNA to reflect the stored data using enzymes, and then return them to a new cell.

Obviously, the team also maps out the DNA so that the stored information can later be located. The team has also created a three-tiered security fence for encoding the data, as well as built-in checks to make sure that mutations in cells don't corrupt the data.

Text, images, music, and video can all be stored within cells—and just one gram of bacteria can hold the same amount of information as 450 2,000GB hard disk drives.

"This means that you will be able to keep large datasets for the long term in a box of bacteria in the refrigerator," Aldrin Yim, a student instructor and a 2010 gold medalist in MIT's iGEM competition, told the AFP.

This is not the first we've heard of biostorage, either. In 2007, scientists at Keio University successfully encoded "e=mc2 1905!" (Einstein's theory of relativity, complete with year) in the DNA of soil bacteria Bacillus subtilis.

So, why would we use bacteria to store our data when we have such advanced methods of data storage as flash drives? Well, there are a few benefits.

First of all, bacteria are everywhere and are survivors. Not only do bacteria live all over the place (including inside your lower intestine, which is where E. coli is found), but they can survive in all sorts of conditions. Deinococcus radiodurans can even survive nuclear holocausts. Take that, ioSafe.

Secondly, bacteria are constantly reproducing, and the data is stored in their DNA. This means that the data could last thousands of years as the encoded DNA is passed from generation to generation.

Lastly, bacteria is unhackable. "Bacteria can't be hacked," student instructor Allen Yu told the AFP, "All kinds of computers are vulnerable to electrical failures or data theft. But bacteria are immune from cyber attacks. You can safeguard the information."

Unfortunately, this breakthrough doesn't mean you should put off purchasing that new external hard drive--the project is still in the early stages. What the team has really done is proven that the fundamental principles are achievable--but having biostorage as a viable option is a long way off (after all, recovering data takes a team of scientists in a lab).

[Follow Sarah on Twitter (@geeklil) or at sarahpurewal.wordpress.com.]

沒有留言:

發佈留言